Z/2

@
Index Priority @ MX:hjel S_a:_ra;han, I:AVItDIA
ndrey Talman, Meta
WheelNext
. March 21, 2025
summit
TN

o (®



PEP 766: Explicit Priority Choices Among
Multiple Indexes

|
»

Trust in a source Latest and greatest package



PEP 766: Explicit Priority Choices Among
Multiple Indexes

e No shared notion of allowing users to prioritize package source over
package version

® Pip’'s lack of support for source priority is by design

® Leadsto unpredictable results at best, and dependency confusion
attacks at worst

e PEP merged, in draft status. Pip prototype in progress.

o Must allow specifying source priority without disrupting current
Pip behavior.



https://github.com/pypa/pip/issues/8606
https://peps.python.org/pep-0766/
https://github.com/pypa/pip/pull/13210

Key design assumption in ecosystem

Index 1 Index 2 Index 3

User spec

Combined index

g “Best” match for spec




Key design assumption in ecosystem

> All indexes are equal! No priority

Intranet NVIDIA Pytorch

User spec

Combined index

g “Best” match for spec




)

o

Current Issues with multiple indexes and
workarounds

e extra-index-url is not secure: leads to dependency confusion attack
o Workaround is possible by publishing all required dependencies
packages to pypi before publishing to custom index. This is not always
possible or easy to achieve.
® index-url solves security issue with dependency confusion attack however:
o Requires hosting all dependencies of a package on a customized index:

m This is very maintenance intensive, each custom index need to
implement an update mechanism on top of the custom index.

m Rather than servicing dependencies from their official channels, this
produces even more duplication of dependencies on each of the
custom indices

o Not flexible enough solution allowing only 1index at a time
o Does not prevent user issuing extra-index-url command instead of
index-url



PEP 766: Explicit Priority Choices Among
\ Multiple Indexes

> foo==1.2.3 —¢
d <named group>: Indexes, find-links: existing pip behavior within group
1 —~~
1o S
o T ;m Candidate found?
> S v O
c :
5 % <other named group>: Indexes, find-links: existing pip behavior within group Return candidate
c
q) —
O .© :
25 Candidate found? *
nL
v o Index-url, extra-index-url, find-links: existing pip behavior

This is an extension of Poetry’s repository priority concept, with uv’s first-index
Nhavior applying “vertically”: new behavior without disruption to pip legacy!


https://python-poetry.org/docs/repositories/
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes

PEP 766: Explicit Priority Choices Among

Multiple Indexes
foo==1.2.3 —

\_//

d corporate_builds: internal company index, find-links for personal builds
A
12
= = ~ No ¢ Candidate found?
g5 ' vy O
O © .
o c_:>U deep_learning: pytorch, jax, nvidia indexes Return candidate
L ©
S 3 }
S = Candidate found?
=
v &g)/ Index-url, extra-index-url, find-links: existing pip behavior

Groups are arbitrary. New complexity in configuration, but it also makes more sense to
kflgure sources semi-permanently in config files instead of CLI flags.



Workshop plans

UX development

@)
@)
@)

What should CLI syntax look like?

What should config files look like?

How hard should we work on trying to get other projects to

adopt this? O
Should we open Pandora’s box in terms of saying that a given
filename does not need to be similar content everywhere? That
location + filename is the identifier?

PEP refinement

@)

@)

PEP was written under assumption that we could not get pip to
make a breaking change in adopting index priority. Are things
different now that we have a non-breaking way to alter pip?
Incorporate interoperability with PEP 708

Brainstorming potential shortfalls



