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PEP 766: Explicit Priority Choices Among
Multiple Indexes
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Trust in a source Latest and greatest package



PEP 766: Explicit Priority Choices Among
Multiple Indexes

e No shared notion of allowing users to prioritize package source over
package version

® Pip’'s lack of support for source priority is by design

® Leadsto unpredictable results at best, and dependency confusion
attacks at worst

e PEP merged, in draft status. Pip prototype in progress.

o Must allow specifying source priority without disrupting current
Pip behavior.



https://github.com/pypa/pip/issues/8606
https://peps.python.org/pep-0766/
https://github.com/pypa/pip/pull/13210

Key design assumption in ecosystem
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Key design assumption in ecosystem

> All indexes are equal! No priority
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Current Issues with multiple indexes and
workarounds

e extra-index-url is not secure: leads to dependency confusion attack
o Workaround is possible by publishing all required dependencies
packages to pypi before publishing to custom index. This is not always
possible or easy to achieve.
® index-url solves security issue with dependency confusion attack however:
o Requires hosting all dependencies of a package on a customized index:

m This is very maintenance intensive, each custom index need to
implement an update mechanism on top of the custom index.

m Rather than servicing dependencies from their official channels, this
produces even more duplication of dependencies on each of the
custom indices

o Not flexible enough solution allowing only 1index at a time
o Does not prevent user issuing extra-index-url command instead of
index-url
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This is an extension of Poetry’s repository priority concept, with uv’s first-index
Nhavior applying “vertically”: new behavior without disruption to pip legacy!


https://python-poetry.org/docs/repositories/
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes
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Groups are arbitrary. New complexity in configuration, but it also makes more sense to
kflgure sources semi-permanently in config files instead of CLI flags.



Workshop plans

UX development

@)
@)
@)

What should CLI syntax look like?

What should config files look like?

How hard should we work on trying to get other projects to

adopt this? O
Should we open Pandora’s box in terms of saying that a given
filename does not need to be similar content everywhere? That
location + filename is the identifier?

PEP refinement

@)

@)

PEP was written under assumption that we could not get pip to
make a breaking change in adopting index priority. Are things
different now that we have a non-breaking way to alter pip?
Incorporate interoperability with PEP 708

Brainstorming potential shortfalls



