
Index Priority @
WheelNext
summit

Michael Sarahan, NVIDIA
Andrey Talman, Meta

March 21, 2025

PEP 766: Explicit Priority Choices Among
Multiple Indexes

Trust in a source Latest and greatest package

PEP 766: Explicit Priority Choices Among
Multiple Indexes

● No shared notion of allowing users to prioritize package source over
package version

● Pip’s lack of support for source priority is by design
● Leads to unpredictable results at best, and dependency confusion

attacks at worst
● PEP merged, in draft status. Pip prototype in progress.

○ Must allow specifying source priority without disrupting current
Pip behavior.

https://github.com/pypa/pip/issues/8606
https://peps.python.org/pep-0766/
https://github.com/pypa/pip/pull/13210

Key design assumption in ecosystem

Index 1 Index 2 Index 3

Combined index

User spec

“Best” match for spec

Key design assumption in ecosystem

Intranet NVIDIA Pytorch

Combined index

User spec

“Best” match for spec

All indexes are equal! No priority

Current Issues with multiple indexes and
workarounds
● extra-index-url is not secure: leads to dependency confusion attack

○ Workaround is possible by publishing all required dependencies
packages to pypi before publishing to custom index. This is not always
possible or easy to achieve.

● index-url solves security issue with dependency confusion attack however:
○ Requires hosting all dependencies of a package on a customized index:

■ This is very maintenance intensive, each custom index need to
implement an update mechanism on top of the custom index.

■ Rather than servicing dependencies from their official channels, this
produces even more duplication of dependencies on each of the
custom indices

○ Not flexible enough solution allowing only 1 index at a time
○ Does not prevent user issuing extra-index-url command instead of

index-url

PEP 766: Explicit Priority Choices Among
Multiple Indexes

This is an extension of Poetry’s repository priority concept, with uv’s first-index
behavior applying “vertically”: new behavior without disruption to pip legacy!

Index-url, extra-index-url, find-links: existing pip behavior

<other named group>: Indexes, find-links: existing pip behavior within group

D
es

ce
nd

in
g

P
rio

rit
y

(s
er

ia
l e

va
lu

at
io

n)

<named group>: Indexes, find-links: existing pip behavior within group

foo==1.2.3

Candidate found?

Candidate found?

Return candidate

Yes

YesNo

No

https://python-poetry.org/docs/repositories/
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes
https://docs.astral.sh/uv/configuration/indexes/#searching-across-multiple-indexes

PEP 766: Explicit Priority Choices Among
Multiple Indexes

Groups are arbitrary. New complexity in configuration, but it also makes more sense to
configure sources semi-permanently in config files instead of CLI flags.

Index-url, extra-index-url, find-links: existing pip behavior

deep_learning: pytorch, jax, nvidia indexes

D
es

ce
nd

in
g

P
rio

rit
y

(s
er

ia
l e

va
lu

at
io

n)

corporate_builds: internal company index, find-links for personal builds

foo==1.2.3

Candidate found?

Candidate found?

Return candidate

Yes

YesNo

No

Workshop plans

● UX development
○ What should CLI syntax look like?
○ What should config files look like?
○ How hard should we work on trying to get other projects to

adopt this?
○ Should we open Pandora’s box in terms of saying that a given

filename does not need to be similar content everywhere? That
location + filename is the identifier?

● PEP refinement
○ PEP was written under assumption that we could not get pip to

make a breaking change in adopting index priority. Are things
different now that we have a non-breaking way to alter pip?

○ Incorporate interoperability with PEP 708
● Brainstorming potential shortfalls

